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This paper presents a novel analytical model to explain the emergence of reflexively autocatalytic
and food-generated (RAF) sets in Kauffman networks. The sharp transition in the probability of
observing RAF sets as a function of catalytic probability is a well-documented, but unexplained
phenomenon. Our model reveals that this behavior arises from the disparity between the number of
ways to select k unique molecule-reaction pairs and the number of ways to allocate minimally RAF
sets among them. This perspective on RAF theory offers new insights into the underlying structure
of Kauffman networks, particularly emphasizing the importance of catalytic cores. This work further
predicts the number of catalytic cores proportional to n2n+1 in realistic Kauffman networks. While
this model advances the understanding of RAF set formation, it relies on the simplifying assumption
of non-overlapping catalytic cores. Future work should incorporate overlap probabilities and refine
the restricted partition function to better capture the behavior of RAF emergence.

I. INTRODUCTION

The first major hypotheses regarding the emergence
of life from evolving chemical systems were proposed
nearly a century ago [1, 2]. Since then scientific theory
has developed into two major schools of thought: the
RNA-first theory and the protein-first theory. Whereas
both hypotheses rely on self-sustaining chemical reac-
tions as a prerequisite, they differ on the assumed chem-
ical properties of their constituents. The RNA-first the-
ory suggests that life began with self-reproducing RNA
molecules. Over time, these molecules evolved to encode
genetic information as we understand it today. While the
RNA-first theory benefits from experimental evidence of
RNA’s catalytic abilities [3], it lacks the necessary self-
replication mechanism. In the protein-first theory, the
first biological molecules were proteins and life emerged
from a set of organized and self-sustaining chemical reac-
tions. Since proteins are natural catalysts, this model is a
more chemically feasible alternative than the RNA-first
theory. However, it still struggles to answer how pro-
teins can replicate without an initial template structure
or genetic code [4].

Since the 1970’s scientists have attempted to reconcile
the two frameworks via a handful of theoretical mod-
els including hypercycles, chemeotons, autopoietic sys-
tems, (M,R) systems, and collectively autocatalytic sets
[5]. Despite progress, each theory encounters issues in ex-
plaining self-replication without external templates. The
autocatalytic set theory offers a promising alternative
due to its basis in self-sustaining reaction networks, sup-
ported by experimental observations of early biological
systems [6, 7]. The autocatalytic set model argues that
given a sufficiently large set of molecules and a library of
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catalyzed reactions, the molecules will react within their
environment and spontaneously produce a self-sustaining
set. Instead of considering a particular chemical species,
the autocatalytic reaction network framework considers
sets of molecules that can interact to create the desired
properties of self-sustenance and self-replication. These
sets, referred to as autocatalytic sets, are a subset of
the total set of molecules and reactions such that each
molecule in the set is produced by a reaction also in the
set. Furthermore, to be included in the set, each reac-
tion must be catalyzed by a molecule in the set. These
conditions, also known as catalytic closure, allow us to
formalize the idea of “life-like” chemical systems [8]. The
remainder of this paper will focus on this formulation of
autocatalytic sets.

Research in this field has been primarily focused on
the probability of observing a self-sustaining set in simple
prebiotic models. Previous theoretical efforts have con-
centrated on bounding the required rate of catalyzation
to probabilistically ensure this phenomenon. Computa-
tional work, on the other hand, has centered on the be-
havior of autocatalytic sets across varying chemical mod-
els and probabilistic regimes. To our knowledge, there is
no analytical explanation for the observed emergent phe-
nomena. The main motivation behind this work is to
provide such an explanation and bridge the theoretical
and computational gap. In particular, in this paper, we
propose an analytical model to elucidate the mechanics
of the emergence of self-sustaining sets as a function of
catalytic probability in Kauffman networks [9].

In this work, we introduce a closed-form combinatoric
model to explain the emergence of RAF sets in Kauff-
man networks. In Section 2, we cover the background
formalization of Kauffman networks, autocatalytic sets,
and their behavior as a function of catalytic probability.
Section 3 outlines the proposed combinatoric model, and
Section 4 describes the outcomes of the model and dis-
cusses the origins of the probability transition. Section 4
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also discusses the behavior of the core set and its impor-
tance in determining the RAF behavior of the system.

II. REACTION NETWORKS AND THE
EMERGENCE OF AUTOCATALYTIC SETS

A. Reaction Networks

The chemical system we consider in this work is a gen-
eralization of the Kauffman model also known as the bi-
nary polymer model [4]. As outlined in [9], this model ab-
stracts prebiotic chemical reactions to a series of addition
and breaking relations between strings. Each molecule is
labeled by a string defined over an alphabet of ℓ num-
bers. The set of reactions are all possible concatenation
of pairs of strings such that the combined string is still
less than a length n. The set of reactions also includes the
inverse relation corresponding to a string breaking into
substrings. This system is specified by 4 sets defined by
4 hyperparameters.

• X (Molecule set): The set of all possible
molecules is determined by the parameters n and ℓ.
This set is defined as X = {x ∈ {0, 1, ...ℓ − 1}≤n}
where S≤n =

⋃n
i=1 S

i. The size of the alphabet is
represented by ℓ while n represents the maximum
size of a molecule in our set. Therefore, X is the set
of all possible configurations up to length n where
each index takes ℓ possible values. Typically ℓ = 2
and we consider our molecule set as a set of binary
strings up to length n for a total size |X| = 2n+1−2.
In a simple example defined by n = 2 and ℓ = 2,
set X is {0, 1, 00, 01, 10, 11} with a total size of 6.

• F (Food set): The set of food molecules is a subset
of X determined by the parameter t. F = {f ∈
{0, 1, ...ℓ− 1}≤t} refers to the set of molecules with
lengths less than or equal to t. The food set can be
understood as a theoretical molecular reservoir. In
the case where t = 1 and ℓ = 2, F is simply {0, 1}

• R (Reaction set): The reaction set is the set of
all allowed reactions determined by the molecule
set X. The reaction set consists of tuples of r =
({a, b}, {c}) or r = ({c}, {a, b}). The first term in
the tuple refers to the reactants and the second the
products. Each reaction in the reaction set corre-
sponds to the concatenation of two molecules in X
or the breaking of one molecule in X into two sub-
molecules in X. Formally, we define the reaction
set R = {({a, b}, {c}) and ({c}, {a, b}) : a, b, c ∈
X, c = ab or c = ba}. Note that if a = b, r cor-
responds to the concatenation of a with itself or
the lysis of c into two a molecules. Following these
rules, if we consider the model defined by n = 2

and ℓ = 2, the reaction set is

R =
{
r1 = ({0, 0}, {00}), r2 = ({00}, {0, 0}),

r3 = ({0, 1}, {01}), r4 = ({01}, {0, 1}),
r5 = ({1, 0}, {10}), r6 = ({10}, {1, 0}),

r7 = ({1, 1}, {11}), r8 = ({11}, {1, 1})
}

The size of the set of reactions |R| grows at the rate
n2n+1 [10].

• C (Catalyst set): The set of catalyzing reactions
C records which molecules can catalyze which re-
actions in the system. Each relation is denoted by
a tuple c = (x, r) : x ∈ X, r ∈ R. Therefore,
C ⊆ X × R. A given molecule-reaction pair c is
included in C with probability p. Thus, for a given
system, |C| ∼ Binom(|X| · |R|, p). Following the
earlier examples defined by n = 2 and ℓ = 2, for a
non-zero or non-one probability parameter p, one
possible realization of C is

C =
{
(00, r3), (00, r4), (00, r7), (00, r8),

(01, r1), (01, r2), (11, r1), (11, r2)
}

For the remainder of this paper, we set ℓ = 2 and t = 2
such that we only have two remaining hyperparameters:
n and p. The parameters n and p correspond to, re-
spectively, the size of the network and the probability of
including each molecule-reaction catalyzation in the set
of C. We also assume that if a molecule catalyzes a given
reaction, it will also catalyze the corresponding reverse
reaction. If r = ({a, b}, {c}) and r′ = ({c}, {a, b}, then,
if (x, r) ∈ C ⇒ (x, r′) ∈ C. For more details see [9].

B. Autocatalytic Sets

The most common and applicable formalization of an
autocatalytic set in a Kauffman network is called an RAF
(Reflexivley Autocatalytic and Food-generated) set. A
reaction network defined by R′ ⊆ R and X ′ ⊆ X is said
to be RAF if it satisfies the following conditions:

• Reflexively Autocatalytic: ∀r ∈ R′,∃x ∈
supp(R′) : (x, r) ∈ C where supp(R′) =⋃

r∈R′{ra, rb, rc}. Intuitively, this refers to the set
of reactions where each reaction r is catalyzed by a
molecule involved in another reaction in R′ or the
food set F .

• Food-Generated: A set is food generated if every
reactant in R′ can be created by repeated applica-
tions of reactions in R′ and molecules in F .

Essentially, an RAF set is a set of molecules and reactions
that can generate every molecule in the set using reac-
tions that are catalyzed by other members of the set or
in the food set. [9] outlines a more rigorous formalization
of RAF sets and some of their key properties.
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C. Emergence of Autocatalytic Sets

The earliest hypotheses on the emergence of autocat-
alytic sets in Kauffman networks were made by Stuart
Kauffman himself in 1986 [4]. In this paper, he ar-
gued that observing an RAF set in a binary polymer
model should be highly probable since the process is
akin to the emergence of a giant connected component
in an Erdos-Reyni graph. Later, Lifson argued against
the assumptions in Kauffman’s original work stating that
rather than keeping the probability of catalyzation fixed
across various network sizes, a more reasonable expecta-
tion would be to fix the average number of catalyzations
per molecule, f = p · |R|. Under this more realistic sys-
tem, it was unclear whether an RAF set should emerge.
This remained an open question until 2004 when it was
computationally shown that only a linear growth rate
in the expected number of catalyzations was required to
spontaneously generate RAF sets [9]. This result was
then theoretically proven by Steel and Mossel [11]. In
fact, they proved this under stronger assumptions than
required for the binary polymer model showing that a
linear growth rate is more than sufficient to ensure the
spontaneous emergence of RAF sets. Computational re-
sults have also found that the level of catalysis only needs
to be between 1 < f < 2 for network sizes up to 20. In
fact, computationally, f grows linearly with n according
to f = 1.0970 + 0.0189n [12]. Recent work has moved

FIG. 1. Simulations of the probability of finding an RAF set
across various average catalysis parameters by network size.
Note the transition probability between 1 < f < 2.

away from studying the requirements of spontaneous au-
tocatalytic sets into studying the structure of the RAF
sets themselves. One of the concepts under investiga-
tion is the notion of irrRAFs, minimally RAF subsets of
RAF networks. Hordjik et al. found that within a sin-
gle RAF set, there can be exponentially many irrRAFs.
They also found that these irrRAF overlap, on average,
by about 50% but can range anywhere from 25% to 80%
[13]. irrRAFs provide a fresh perspective on the evolv-

ability and emergence of RAF sets. In this work, we
build on the work of Hordjik et al. to propose an ana-
lytical model for the emergence of maximal RAFs as a
function of the number of irrRAFs in the binary polymer
model. To the best of our knowledge, this is the first
proposed explanation for the emergence of RAF sets.

III. MODEL

For a given system with network size n and probabil-
ity parameter p, we can sample various C to estimate
P (RAF ), the probability of observing an RAF set [9].
The goal of this paper is to develop a closed-form non-
asymptotic estimate for this quantity. First, we begin by
framing the probability of observing an RAF set in the
language of boolean analysis. For example, in a given
network size n and probability parameter p, we can de-
fine C as an |X| · |R|/2 dimensional boolean vector where
each 1 indicates that the corresponding molecule-reaction
catalyzation is included in our set C. For the remainder
of this paper, we refer to the size of sample space as
S = |X| · |R|/2 as determined by network size n. Note
that we divide the set of available vectors by 2 to account
for the assumed reflexive property of catalysis. Then, we
define RAF (C) as an indicator function if the network
of size n and catalyst set C contains an RAF set. For
a given p and corresponding catalyst set Cp, we define
P (RAF ) as

P (RAF ) = E[RAF (Cp)] (1)

P (RAF ) for a given p is thus the probability of observ-
ing an RAF set with the system parameters n and p.
We can characterize P (RAF ) by decomposing it into a
summation of probabilities conditional on the number of
catalysts in C.

P (RAF ) =

S∑
i=1

P (k = i)P (RAF |k) (2)

In the above expression, k =
∑

xi is the number of bits
turned on. The term P (k = i) represents the probability
of turning a total of i bits. Since each bit is turned on
with an independent probability p, this term follows the
binomial distribution.

P (k = i) =

(
S

i

)
pi(1− p)mR−i

∼ Binom(S, p)

(3)

The second conditional probability term, P (RAF |k), is
where the bulk of the complexity resides.

A. Intuition

The intuition behind our method involves the notion
of “catalytic cores” which can be thought of as mini-
mally RAF catalytic sets. In other words, if a set is
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RAF, the core is the set of catalyzations that contribute
to the RAF set. They can be defined as the set of cat-
alysts such that removing any catalyst will convert the
set from RAF to non-RAF. Note that the notion of cat-
alytic cores is identical to the minimal CRA introduced
by [11] or irreducible RAF used in [13]. If we know the
cores of the system, we can exactly write P (RAF |k) as
a simple combinatoric equation. However, given the dif-
ficulty of enumerating the cores of a system, we consider
the simplified case where we only know the total number
of cores. The new challenge in this method arises from
differentiating sets of solutions that share common bits.
In fig˙ 2, we have 2 cores. The core of length 3 is colored

FIG. 2. Toy example with |X| = 5 and |R| = 7. The grid visu-
alizes which molecules in X catalyze corresponding reactions
in R. The system is defined by two RAF cores in green and
orange. a) depicts the case with two non-overlapping cores,
while b) is an example of a system with two cores sharing an
overlapping catalyst (striped green and orange).

green while the core of length 2 is in orange. In b) we
see that they share a catalyst denoted in striped orange
and green. For a given k catalyzations, the probability
of hitting at least one of the cores is greater in the case
that the cores share a catalyst. In the Kauffman net-
work, a priori, we do not know which solutions overlap
with others. Instead, we can assume no overlap between
our solutions to place a theoretical lower bound on the
probability of observing an RAF set.

Armed with a distribution of catalytic cores, we begin
with conditioning P (RAF ) by the number of bits turned
on (see eq. 2). Within the k catalysts in our set C, we
want to consider the cases where we occupy 1 ≤ m ≤ k
bits with catalytic cores. We require at least one core
so that the set is RAF. The number of ways we can al-
locate cores across m catalysts is approximated by the
restricted integer partition function over the finite set of
cores. The remaining k −m bits must allocated to non-
cores. We estimate this value by the number of ways we
can select k −m catalysts from the remaining set. This
value is further corrected by the ways we may overcount
cores in the combinatoric calculation. The remainder of
Section 3 details the mechanics of this process. Note that
our no overlap assumption becomes increasingly inaccu-
rate as we increase m; however, as discussed later, we
find that the relevant values of m are sufficiently small
that the assumption remains useful for our purpose of
understanding the phase transition.

B. Definitions

For a given network size n and probability parameter p,
we sample C ∈ {0, 1}S where each xi = 1 with probabil-
ity p. This defines a discrete hypercube in S dimensions
with probability measure

Pp(x1, ...xS) = pk(1− p)S−k (4)

where k =
∑

i xi. We can define RAF (x) as a function
of these boolean variables that returns 1 if the set of
catalyzations yields an RAF set or 0 otherwise. We then
define the set of solutions or RAF catalyzations as

Ω = {C ∈ {0, 1}S : RAF (C) = 1} (5)

Within Ω we define A, the set of cores, as the set of
vectors such that flipping any of the inputs from True to
False will remove the vector from Ω. Intuitively, the set
of cores is the minimal set of catalyzations that remains
RAF. In explicit notation, we first define the set Θx for a
given boolean vector x as the set of boolean vectors with
no additional True indices:

Θx = {y ∈ {0, 1}S |∀i, yi = 0 whenever xi = 0} (6)

Based on this definition, we define our set of cores as the
set of RAF solutions, such that none of the associated
Θx (save the x itself) is a solution.

A = {x ∈ Ω : ∀y ∈ {Θx\x}, RAF (y) = 0} (7)

The set A therefore defines the set of RAF solutions
such that removing any of the catalyzations (flip-
ping a True bit) destroys the solution. We refer to
the size of our cores as L = |A|. Our final set defi-
nition, Am, is the subset of vectors in A with m True bits

Am = {x ∈ A :
∑

xi = m} (8)

Am is thus the set of core solutions with length m.

C. Model

Our general method for estimating P (RAF |k) is to
enumerate the possible vectors x with length k such that
RAF (x) = 1.

P (RAF |k) =
∑
x∈Bk

P (x)

Bk = {x ∈ Ω :
∑

xi = k}
(9)

Since each x ∈ Bk has the same distribution of 0 and
1 bits, they each occur with the same probability. In
other words, P (x) is uniformly distributed over the

(
S
k

)
possible vectors with k bits turned on.

P (RAF |k) = |Bk|(
S
k

) (10)
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Approximating Bk

The problem reduces to estimating the size of set Bk.
For a given boolean vector in |Bk|, m, the size of all of
our catalytic cores can occupy values 1 ≤ m ≤ k. For
each given m, we consider the number of ways that we
can allocate our set of catalysts A into m bits. Since
we assume no overlaps between cores, we can calculate
this value as a restricted integer partition over a finite
set, pA(m). With the remaining k −m bits we want to
calculate how we can allocate them across non-solution
catalysts. There are a total of S−m remaining unselected
catalysts. To avoid selecting catalyst cores, we want to
remove all cores |A1| from the available set. Finally, to
avoid selecting catalysts that constitute a core, we correct
our estimate by the number of ways that we can include
cores from lengths 2 ≤ j ≤ k − m via the restricted
partition function. Altogether, our estimate for Bk takes
the form:

|Bk| ≈
k∑

m=1

pA(m)·max

(
S − |A1| −m

k −m

)
−

k−m∑
j=2

pA(j), 0


(11)

The max function ensures that when the correction term
surpasses the number of ways to place the remaining k−
m bits, the contribution to |Bk| is 0.

Restricted Partition Function

In number theory, partition functions return the num-
ber of distinct ways of representing n as a sum of positive
integers. In our problem, we are interested in a variation
of the partition function known as the restricted integer
partition over a finite set. Unlike the traditional par-
tition function, the restricted partition function, pA(n),
provides the number of distinct ways to sum values in A
to equal n.

pA(n) =
∣∣{a ⊆ A :

∑
x∈a

x = n}
∣∣ (12)

There are no known closed-form representations of the re-
stricted partition function or general partition function,
but there exist asymptotic expansions for variants of the
problem. For a finite set A with L relatively prime ele-
ments, the asymptotic expansion of the restricted parti-
tion function over this set is proportional to nL−1. The
full asymptotic expansion is [14]

pA(n) =

(
1

Πa∈Aa

)
nL−1

(L− 1)!
+O(nL−2) (13)

However, the regime we are interested in is the small n
regime for which the asymptotic correction factor is not
appropriate. For that reason, we estimate the restricted
partition function via the proportionality relation

pA(n) ∝ nL−1 (14)

With these estimates in place, we can fully predict and
model the behavior of the P (RAF ) function for various
network sizes and catalyzation probabilities as a function
of the number of cores. In the proceeding sections, we
demonstrate the validity of the proposed model, explain
the apparent phase transition, and comment on further
model predictions and limitations.

Approximations

The heart of the proposed model is a counting argu-
ment involving combinations and the restricted partition
function. These terms grow at rates that are not com-
putationally tractable to solve exactly. Instead, when
implementing this model we rely on a handful of approx-
imations. First, for the partition function, we use the
proportionality relation given in eq. 14 with a scaling
constant D. The value of D is selected to produce a
probability transition in the range near f = 1.25. We
also estimate the combination functions via the upper-
bound approximation(

n

k

)
≈

(n
k

)k

(15)

Finally, to limit the computational strain of summing
over all possible k, the count of catalysts, we only con-
sider the high probability terms within 0.25 standard de-
viations of the expected number of catalysts. These re-
gions are highlighted in fig. 5.

IV. RESULTS AND DISCUSSION

Origin of Phase Transition

Using the model developed in Section 3, we first
demonstrate its ability to replicate the behavior exhib-
ited in fig. 1. Consider a Kauffman network defined by
n = 6. The behavior shown in fig. 3 can be understood
in three parts. As discussed in Section 3, the probabil-
ity of observing an RAF set can be broken down into a
conditional probability statement. Each P (RAF |k) term
can then be estimated by eq. 10. If we plot the behav-
ior of each term in the expression, we can see where the
sharp jump in probability arises. As shown in fig. 4,
|Bk| grows at a polynomial rate while the combinato-
rial term in the denominator grows exponentially in k.
Intuitively, we can think of the conditional probability,
P (RAF |k), as proportional to the difference between the
two lines. We see that at k < 160 the numerator is sub-
stantially smaller than the number of ways we can select
k catalysts. However, for k > 160, we see that the nu-
merator dominates the denominator. This implies that
at low k, P (RAF ) → 0 and at high k P (RAF ) → 1.
The sharp jump in probability occurs in the region sur-
rounding k = 160 with the sharpness exaggerated by the
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FIG. 3. Probability of observing an RAF set in a n = 6
Kauffman network plotted against the expected number of
catalyzations per molecule. Simulation data (in orange) is
plotted next to the theoretical model (in green) from Sec-
tion 3.

FIG. 4. Behavior of the terms in the eq. 10 in log space as
a function of k catalyzations in the n = 6 Kauffman network
with core distribution shown in fig. 3. The estimate |Bk|
surpasses the denominator term at approximately k = 136.

exponential difference in the terms. Also, note that the
limitations of this model do not appropriately restrict the
conditional probability terms to be ≤ 1; however, for our
purposes, when the numerator exceeds the denominator,
we consider the conditional probability estimate to be
1. The corresponding conditional probability behaves as
shown in fig. 5. The final P (RAF ) estimate is calculated
as the product of the conditional probability with the
distribution of k. Therefore, the product almost entirely
vanishes for small f < 2. Similarly, for large f > 3, each
conditional probability term is effectively 1. The values of
f that center near k = 160, or the conditional probability
jump, are where we observe the phase transition behav-
ior. Thus the phase transition occurs at the catalyzation

FIG. 5. a) The conditional probability of observing an RAF
set in a n = 6 Kauffman network with the core distribution
given by fig. 3. b) Distributions of k as a function of the
expected number of catalysts per molecule

probability where the binomial coefficient in the denom-
inator of eq. 10 equals the estimate for |Bk|. The main
driving force behind this action is the conditional proba-
bility step function created by the polynomial growth of
|Bk|. Remember that this behavior is a consequence of
the restricted partition function. Furthermore, since the
restricted partition is a function of the core distribution,
we can vary L, the size of the cores, and D, the scaling
factor, to recover any desired phase transition point.

FIG. 6. Plots of the probability of observing an RAF set in
an n = 6 Kauffman network for various core distributions.
Note that the core distributions in these particular plots were
constructed using various values of L, the number of catalytic
cores, and an appropriate scaling factor D. (see the section
“Approximations”)
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Behavior of Core Set

The catalytic cores clearly define the behavior of the
system. In this model, we are primarily concerned with
two parameters: L, the size of the core set, and M , the
product of the sizes of the core set. As discussed in Sec-
tion 3, the partition function is polynomial of order L−1
with asymptotic corrections proportional to (L− 1)! and
M . Simulations of small Kauffman networks show that
the core set tends to be negatively skewed by core size
and contains at least 1 core for every length between 1
and the size of the largest core. They also confirm that
|A1| = 96 for networks with sizes between n = 3 and
n = 8. Furthermore, if An represents the set of cores for
a Kauffman network of size n, then An ⊆ An+1. This
is a direct consequence of the definitions of Kauffman
networks since every network is a subset of a larger n
network. It follows that any RAF set in a smaller net-
work will maintain this property in a larger network.
As demonstrated in fig. 6, the core set controls the phase
transition point. Furthermore, as shown in fig. 1, for
Kauffman networks n ≥ 6, the probability transition
roughly occurs f = 1.25. Previous work has found that f
grows linearly with n according to f = 1.0970 + 0.0189n
[12]. This implies that we can understand the growth
rate of the core set by calculating the required size for
a phase transition at f = 1.0970 + 0.0189n. Consider a
general network defined by size n and core distribution
A. As discussed in Section 3, A consists of L relatively
prime integers corresponding to core lengths and a prod-
uct of core lengths, M . In the framework presented by
our model, the phase transition occurs when(

S

k

)
= pA(k) (16)

In a realistic chemical model, we can consider networks
with 20 ≤ n ≤ 30. This implies an average catalyza-
tion value of f ≈ 1.5 and implied catalytic probability
p = 1.5/|R|. Furthermore, this gives us a transition
point defined by k = S · p. Recall that |X| ∼ 2n+1

and |R| ∼ n2n+1. Using the asymptotic approximation
for the binomial coefficient,(

S

k

)
∼

(
Se

k

)k

· (2πk)−1/2 · exp
(
− k2

2S

)
(17)

Plugging in asymptotic approximations and taking the
binary logarithm of both sides, we find the LHS of eq. 16
equal to

2n+1 (log(n) + n+ log(e))− 1

2
log(π)− n

2
− 1− 1

2n
(18)

where n dominates the parenthetical expression, simpli-
fying the equation to n2n+1. Similarly, on the RHS of
eq. 16, we can approximate the asymptotic expression
using eq. 13.

(L− 1) (n+ 1− log(L− 1) + (L− 1))− log(M) (19)

We can simplify this expression by noticing that L ≫ n
so that the L−1 term dominates. Putting it all together,
we find that

n2n+1 = (L− 1)2 − log(M) (20)

We can further analyze M by considering the constraints
of the core distribution. We can frame M as an opti-
mization problem of allocation variables x1, ...xm where
each xi refers to the number of cores of size i.

obj.

m∑
i=1

xi log(i) (21)

s.t. xi ≥ 1 ∈ Z (22)
m∑
i=1

xi = L (23)

1 ≤ m ≤ L (24)

We are interested in maximizing and minimizing the ob-
jective function subject to the constraints that we have
at least 1 core from size 1 to m such that the total num-
ber of cores is L. Note that the constraints of this setup
are looser than the actual distribution of cores, but still
provide useful bounds. A simple analysis of this problem
shows that the minimum allocation is to assume x1 = L.
This refers to the case where every core has a length of
1. In this case, M = 1. The maximal allocation can
be found by conditioning on the number of decision vari-
ables m. For a given m core sizes, it is clear that the
optimal allocation is 1 core for each size up to m−1 with
the remaining cores allocated to xm. The optimal M for
a given m is thus

m−1∑
i=1

log(i) + (L−m+ 1) log(m) (25)

This is a monotonic function of m, which implies that
the optimal allocation is xi = 1 for 1 ≤ i ≤ L. It follows
that M = L!. Therefore,

1 ≤ M ≤ L! (26)

Plugging this bound into the eq˙ 19, we see that

L2 ∼ n2n+1 (27)

This implies that the size of cores grows at a rate of
roughly

√
|R|. Thus we provide an estimate of the num-

ber of irrRAFs as a function of n. We corroborate the
exponential growth of irrRAFs as a function of n and
provide a stronger relation than presented in [15].

Limitations

The proposed model has two primary limitations.
First, the model itself relies on a lower-bound approxima-
tion based on the assumption that cores do not overlap.
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This assumption is false, but we argue that the relevant
k near the transition point is sufficiently small enough
that the no overlap assumption does not lead to grossly
inaccurate estimates. The error associated with this as-
sumption is also likely canceled partly by the approxima-
tions of the partition function itself. Another limitation
of the model is the inputted core size and associated scal-
ing factor. This value drives the transition point of the
model and can be selected to produce almost any result
desired. The values we used in this paper to produce esti-
mates of the system were selected to resemble simulation
data. These values can be verified experimentally, but re-
quire considerable computational power. At this point,
such verification is left as a future task. Another remedy
for this limitation would be to use a more accurate lo-
cal partition function. In doing so, we could remove the
need for the scaling factor D and define the model by a
singular parameter.

V. CONCLUSION

In this paper, we introduce a novel analytical model for
understanding the emergence of RAF sets in a simple bi-
nary polymer model. Our findings demonstrate that the

observed probability transition stems from the dispar-
ity between the exponential growth of possible catalytic
subsets and the available ways to allocate minimally RAF
subsets within those choices. This results in a sharp prob-
ability jump as the polynomial growth of the allocation
quickly dominates the combinatorial denominator. Un-
derstanding RAF sets from this perspective allows us to
infer the underlying structure of Kauffman networks. In
particular, we see that RAF sets are built from catalytic
cores whose number grows at a rate n2n+1. This model
provides a strong step forward in understanding the na-
ture of RAF theory but relies on the assumption that
none of the catalytic cores overlap. Future iterations
of this model should correct this assumption to be in
line with experimental data. We also recommend further
work in estimating the local restricted partition function
over the set of catalytic cores. A stronger approxima-
tion of this quantity would allow us to relate the neces-
sary count of catalytic cores to the catalytic probability
of observing an RAF set. Consequently, we can make
meaningful claims on the chemical realism of the Kauff-
man model and its variants. Additionally, this framework
offers potential applications beyond RAF theory, partic-
ularly in estimating probabilities for monotonic boolean
functions with non-overlapping minimal solutions.
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