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1 Markov Chains

Markov chains refer to systems that evolve over time according to probability distributions. A key detail of markov
chains is that the evolution of the system only depends on the most recent state of the system.

Specifying and simulating a Markov Chain

Markov chains are defined by three details:
State Space, S

The state space is a finite or countable set of states that represents the possible realizations of a random variable X.

Initial Distribution, π0
The initial distribution represents the probaiblity distribution of the Markov chaing at t = 0. For each state in the
state space π0(i) = P[X = i] represents the probability that the markov chain begins in state i. Each entry in the
initial distribution abides by π0(i) ≥ 0 and

∑
i π0(i) = 1.

Probability Transition Rule, P

If the state space has size N, the proability transition matrix P ∈ RN×N . Each entry Pij of the matrix can be
interpretted as the conditional probability of transitioning from state i at time n to state j at time n+ 1. We refer
to probability transition matricies that do not depend on n to be time homogenous markov chains. To abide by
probability rules, we further require the each entry to be non-zero and the sum of each row to be equal to 1.

The Markov Property

Definition 1 (Markov Property) A process X0, X1, ...Xn is said to satisfy the Markov property if

P{Xn+1 = in+1|Xn = in, Xn−1 = in−1, ...X0 = i0} = P{Xn+1 = in+1|Xn = in} ∀n, i ∈ S

Intuitively, the Markov property can be understood as the transition probaiblity solely depending on the previous
step. The Markov Property allows the simpliest form of dependence relations between the variables without over
complicating the system. Application of the markov property allows us to decompose the path of a random variable
in state space into the probabilities of initial position and each transition.

P{X0 = i0, X1 = i1, ....Xn = in} = P{X0 = i0, }P{X1 = i1|X0 = i0}...P{Xn = in|X0 = i0, X1 = i1, ...Xn−1 = in−1}
= P{X0 = i0, }P{X1 = i1|X0 = i0}...P{Xn = in|Xn−1 = in−1}
= π0(i0)P (i0, i1)...P (in−1, in)

Markvo chains can be generalized to capture more complex dependence relations:

Definition 2 (rth Markov Property) A process X0, X1, ...Xn is said to be an rth order Markov if

P{Xn+1 = in+1|Xn = in, ...X0 = i0} = P{Xn+1 = in+1|Xn = in, ...Xn−r+1 = in−r+1} ∀n, i ∈ S

It’s all just matrix theory

Let’s consider the probability distribution in state space at time n via the probability vector πn. Suppose that the
markov chain evolves through a state space of size N with a time homogenous probability transition matrix. For
each entry in our probability vector πn, we can compute its value by considering the following summation:

πn+1(j) = P{Xn−1 = j} =

N∑
i=1

P{Xn = i}P{Xn+1 = j|Xn = i} =

N∑
i=1

πn(i)P (i, j)

We can equivalently note this value in matrix notation as πn+1 = πnP . Extrapolating this out, we state that
πn = π0P

n
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1.1 The basic limit theorem of Markov chains

Theorem 1.1 (Basic Limit Theorem) Let X0, X1, ... be an irreducible, aperiodic Markov chain with stationary
distribution π(·). Let X0 have an arbitrary distribution π0. The limn→∞ = πn(i) = π(i) ∀i ∈ S.

Proof to follow later. First, we will define stationary distributions, irreducible, and aperiodic.

Stationary distributions

Definition 3 (Stationary Distribution) We say that π, a distribution across state space, is stationary if

π = πP or equivalently π(j) =
∑
i∈S

πiP (i, j) ∀j ∈ S

If the probability transition matrix is symmetric, then the uniform distriubtion, π(i) = 1
N , is stationary. The

uniform distribution is more generally a stationary distribution for any transition matrix that is doubly stochastic,
both rows and columns sum to 1.

We can solve for the stationary distribution of markov chain computationally by solving for higher powers of Pn or
solving the equivalent algebraic expressions πP = π, π(P−I) = 0 or (PT −I)π = 0 under the constriant

∑
i π(i) = 1.

Stationary distributions do not necessarily exist nor are they unique. For example, consider the situation where
P = I. In this case there are infinitely many stationary distributions as each initial distribution is simply stationary.
We can see examples of Markov chains without stationary distributions when we begin to consider infinite state
spaces.

Definition 4 (Probability Flux) For two subsets of state space A and B we define the probability flux to be

flux(A,B) =
∑
i∈A

∑
j∈B

π(i)P (i, j)

Notice that when B = Ac flux(A,Ac) = flux(Ac, A).

1.2 Irreducibility, Periodicity, and Recurrence

Irreducibility

Notation Note: Pi and Ei refers to the probability/expectation of an event given that the chain was in state i at
time t = 0.

Definition 5 (Accessibility) A state, j, is said to be accessible from state i if it is possible for the chain to visit
state j starting in state i over infinite time.

Pi =

( ∞⋃
n=0

{Xn = j}

)
> 0

Equivalently,

∞∑
n=0

Pn(i, j) =

∞∑
n=0

Pi{Xn = j} > 0

Two states are said to communicate if they are mutually acessible.

Definition 6 (Irreducible) A markov chain is said to be irreducible if every pair of states communicates with
eachother.

We can decompose the state space of the markov chain into groups, or classes, that communicate. Under this
definition, a state space that can be partitioned into a single communicating class is an irreducible class. Notice that
to maek this determination we only rely on the state space S and the probability transition matrix P .
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Periodicity

To account for markov chains bouncing between probability distributions we introduce the constraint of periodicity
in the basic limit theorem.

Definition 7 (Periodicity) For a given markov chain {X0, X1, ...Xn} the period of a state i is given by

di = gcd{n : Pn(i, i) > 0}

Theorem 1.2 If states i and j communicate, then di = dj

Proof: By the definition of communicate we have that for states i and states j Pn1(i, j) > 0 and Pn2(j, i) > 0.
This implies that

Pn1+n2(i, i) > 0

From our definition of preiodicity, we know that di must divide n1 + n2 Now we can introduce a quantity n such
that Pn(j, j) > 0. It necessarily follows that Pn1+n2+n > 0 and we can apply the definition of periodicity. Intuitively,
we have introduced an additional path from i to i that involves a sub loop from j to j(i− > j− > j− > i). We know
that this quanitity must also be divided by d1. Since both n1 + n2 + n and n1 + n2 are divided by di, it is clear that
di divides n. Since dj is the gcd of all path lengths from j to j, dj ≥ di. We can prove this inequality in the opposite
direction by replicating the argument with swapped indicies. Therefore, di = dj .

The theorem implies that all communicating classes have the same periodic number. Therefore, in the context of
an irreducible chain with a single communicating class, we can meaningfully talk about the periodicity of the markov
chain.

Definition 8 (Aperiodic) An aperiodic, irreducible markov chain is an irreducible markov chain with period 1. All
other periods are considered periodic.

Recurrence

Intuitively, recurrence is a measure of whether a Markoc chain in state i will eventually return to state i. If we define
the hitting time of state i as

Ti = inf{n > 0 : Xn = i}

Definition 9 (Recurrent) A state is said to be recurrent if P{Ti < ∞} = 1. Otherwise the state is considered
transient.

Note that recurrent differs from accessible in that it is absolute that the state will return. In terms of hitting
times, we can refer to accessibility as P{Ti <∞} > 0.

Theorem 1.3 If i is a recurrent state and j is accessible from i, then

(i) Pi{Tj <∞} = 1

(ii) Pj{TI <∞} = 1

(iii) j is recurrent

Proof: It is obvious that iii) follows from i) and ii). We informally can argue i) by thinking about each cylce
the chain takes from i to i. Since it is a recurrent state we know that this cycle will occur with definite probability
in a finite amount of time. Furthermore, we know that j is accessible from i. We can then construct a bernoulli
random variable In to denote whether the nth cycle from i passes through j. In the limit as n → ∞ for non-zero
probability,p, we can say that In = 1 with certainity. Statement ii) is also implied by this argument since if a finite
cycle from i to i passing through j occurs, it is necessary that the hitting time between j and i is finite.

Theorem 1.4 The state i is recurrent if and only if Ei(Ni) = ∞ where Ni =
∑∞
n=0 I{Xn = i}
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Proof: The forward direction is clear since for a recurrent state i, Pi{Ni∞} = 1. For the converse, we consider
that i is transient such that Pi{Ti = ∞} > 0. If we use the same repeated cycle argument from above, we see that
we can construe the evolution of the markov chain as repeated cycles around i until it hits a path that takes infinite
time. We can model Ni as a geometric distribution with probability q = Pi{Ti = ∞} > 0. The expected value of
this distribution is 1/q. Therefore, we see that a transient state necessarily has a finite Ei(Ni).

Corollary 1.4.1 If j is transient, then limn→∞ Pn(i, j) = 0 for all states i

Proof: Suppose j is transient. From our previous analysis we know that Ej(Nj) is finite. We now argue that
Ei(Nj) ≤ Ej(Nj) by decomposing Ei(Nj) = Pi{Tj <∞}Ei{Nj |Tj <∞}. Intuitively, we understand this as needing
to get to j in finite steps and then counting the cycles through j. So, we can conclude that Ei(Nj) ≤ Ej(Nj). Since
we define the expected visits as Ei(Nj) =

∑∞
n=1 P

n(i, j) <∞. This can only be true if limn→∞ Pn(i, j) = 0

1.3 Random Walks

A random walk in 1-D is a symmetric random walk where steps are taken in the +1 or −1 directions with probability
1/2. The position of the random walk at time n is given by Sn = X1 + ...+Xn where Xi is the outcome of each step
(±1). For multiple dimensions, we simply concatenate additional random walks to produce a d dimensional vector.

1-D In the 1-D case we will argue that the markov chain is recurrent by showing that state 0 is recurrent and then
citing that recurrence is a class property.

To show recurrence we want to show

E0(N0) =

∞∑
n

Pn(0, 0) = ∞

Notice that if n is odd Pn(0, 0) is immediately 0. Intuitively, you can think of needing an equal number of steps
to the right and to the left to end up at the origin. Therefore, we can restrict our summation to n = 2k for some
integer k. Now, we want to think about P 2k(0, 0). Using the same intuition as above, we need an equal number of
steps to the right and left. Therefore, if we have a total of 2k steps we need k steps to the left and k to the right.
Since each step occurs with probability 1/2 we can see that this probability is given by the binomial distribution
Binom(2k, 1/2)

P 2k(0, 0) =

(
2k

k

)
2−2k

We can approximate this value using Stirling’s formula.

n! ≈
√
2πn

(
k

e

)k
Applying the approximation we find

P 2k(0, 0) =
(2k)!

k!k!22k
≈

√
2π2k(2k/e)2k

2πk(k/e)2k22k
=

1√
πk

Now, we can argue

E0(N0) =

∞∑
k

P 2k(0, 0) =

∞∑
n

1√
πk

= ∞

2-D In two dimensions we can recreate this argument. Since the steps in each direction are independent we can
make the following statement:

P(0,0){S2k = (0, 0)} = P(0){SX2k = (0)}P(0){SY2k = (0)} ≈ 1√
πk

· 1√
πk

=
1

πk

The summation of these values are also infinite. Therefore, the 2-D random walk is also recurrent.
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3-D However, replicating the same argument in 3-D we find that the markov chain is transient.

P(0,0,−){S2k = (0, 0, 0)} = P(0){SX2k = (0)}P(0){SY2k = (0)}P(0){SZ2k = (0)} ≈
(

1√
πk

)3

Theorem 1.5 Suppose a Markov chainh as a stationary distribution π. If state j is transient, then π(j) = 0.

Proof: Given that π is stationary we canstate πPn = π for all n. Deconstructing this summation for index j

n∑
i

π(i)Pn(i, j) = π(j) ∀n

However, since we know that state j is transient, limn→∞ Pn(i, j) → 0 for all i. As n approaches ∞ we see that
the summation approaches 0 and since this equality must hold for all n, we can state that π(j) = 0.

Corollary 1.5.1 If an irreducible Markov chain has a stationary distribution, then it must be recurrent.

Proof: Irreducibility allows us to apply class properties to the chain. Therefore, it must be either recurrent or
transient. From the previous theorem we know that if a transient state exists, π(j) = 0. Since transience is a class
property this implies that all states will have π(j) = 0 which cannot be a stationary distribution.

At this point it is important to introduce the concept of null recurrence. Null recurrence refers to the condition
where P{Ti < ∞} but Ei[Ti] = ∞. Null recurrence can be thought of as states that are barely recurrent in that
despite Ti is almost assuredly finite, the expectation is infinite. States that are not null recurrent are referred to as
positive recurrent. These are recurrent states with less than infinite expectations.

These statements will be explained in depth later, but positive recurrence is a class property and any irreducible
Markov chain has a stationary distribution if and only if it is positive recurrent.

An aside on coupling

At a high level coupling arguments involve constructing two objects from the same set of random numbers. These
objects are then compared to make a probabilistic argument.

Add more ig

1.4 Proof of the Basic Limit Theorem

The Basic Limit Theorem states that if a irreducible aperiodic Markov chain has a stationary distribution π then
for any initial distribution π0 πn → π as n → ∞. In proving this theorem it is useful to define a distance between
probability distributions and show that this distance converges to 0 as n→ ∞.

Definition 10 Let µ and λ be two probability distributions over the sample space S. The total variational distance
is defined as

||λ− µ|| = sup
A⊂S

[λ(A)− µ(A)]

Alternatively,

||λ− µ|| = 1

2

∑
i∈S

|λ(i)− µ(i)| = 1−
∑
i∈S

min{λ(i), µ(i)}

Add proofs later
Another interpretation for the total variational distance is the largest possible discrepancy between probailities

assigned by the two distributions.
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2 Markov Chains: Examples and Applications

2.1 Branching Processes

The problem of Branching Processes was first studied by Sir Francis Galton when thinking about the life time of
family names. If family name is only carried by a male heir, what is the probability that the family name goes
extinct?

As a formal description let’s consider Gt as the number of males in the t− th generation. If we begin with G0 = 1
and Gt = n, we can write a recursive relationship for the number of male descendenants in the next generation as
Gt+1 =

∑n
k=1Xtk whereXtk represents the number of sons fathered by the k-th individual in the previous generation.

Each Xtk is an iid random variable following a pre-defined probability mass distribution.
We can think of this process as a Markov chain. In this language, we can see that state 0 is clearly an absorbing

state. Similarly, we argue that any state i is transient. Notice that for any state i, Pi{Gt+1 = 0} = f(0)i > 0. We
can see that for sufficiently large i, Pi{T0 <∞} < 1 and therefore state i must be transient. Therefore, each state i
is visited only a finite number of times. Consequently, the chain must either absorb at 0 or approach ∞.

With this intuition in hand we can start thinking about defining a recursive definition of the probability of
extinction ρ.

ρ =

∞∑
k=0

P{G1 = k|G0 = 1}P{extinction|G1 = k}

Since each man has a son with independent probability, a lineage can only die off if each of the k lineages from
G1 die off. Therefore, P{extinction|G1 = k} = ρk

ρ =

∞∑
k=0

f(k)ρk = ψ(|rho)

We introduce the function ψ to construct a function only dependent on rho. The extinction probability is then
the fixed point of this function. We refer to ψ as the probability generating function for the probability mass function
f . Using derivative test we can see that the function is strictly increasing and convex. ψ(0) = f(0) and ψ(1) = 1.
An interesting quantity is ψ′(1), the expected number of sons.

ψ′(1) =

∞∑
k=0

kf(k) = µ = E[X]

Depending on the value of µ, we get three possible graphs:

For µ ≤ 1 the only solution is ρ = 1 and the probability of extinction is certain. We see that a non-trivial fixed
point ρ only exists for the case µ > 1.

Add in proof that the lower fixed point is the correct one
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2.2 Time Reversibility

Time Reversibility captures the idea that you can watch the movement of a Markov chain and have no probabilistic
intuition on which direction the chain is moving. Alternatively, it can be understood as being unable to tell whether
the Markov chain movement you are watching is being played in reverse.

Definition 11 A Markov chain is said to be time-reversible if for each n

(X0, ...Xn) = (Xn, Xn−1, ...X0)

Equivalently, the joint distribution of the forward and backward chains are equivalent.

As a consequence of time-reversibility, we can claim that every time reversible chain must also be stationary.
Consider the joint distribution (X0, X1) = (X1, X0). This implies that X1 = X0 and consequently π1 = π0. Since
pi1 = pi0P we can equivalently write pi0 = pi0P which is our definition of stationarity

Theorem 2.1 The Markov chain {Xn} is time-reversible if and only if the distribution of X0 π satisfies π = πP
and π(i)P (i, j) = π(j)P (i, j) for all i,j.

The conditions imposed by this theorem, particularly that the probability flux from i to j is the same as j to i,
is known as local or detailed balance. These conditions are necessary to ensure the propogation of the distribution
that results in the index swapping required for time-reversibility. Stationarity is characterized by global balance:
π(j) =

∑
i π(i)P (i, j) or equivalently

∑
j π(j)P (j, i) =

∑
i π(i)P (i, j). Intuitively, global balance enforces that the

total probability flux for each state is 0 while local balance states that the probability flux betweens pairs of nodes
is equal.

Theorem 2.2 If the local balance conditions hold, then the distribution π is stationary.

Lemma 2.3 All birth and death chains are stationary

For a birth death chain we know that the current chain can only go up or down by 1. Therefore, we can restrict
our flux analysis to indicies above and below i. Using the fact that probability flux of a subset of the states pace
must equal its complement, we can subset our space from {0, ..., i} such that the two transitions of interest are in
differing subsets. It follows that the flux from each subset and thus transition must be equal. Therefore, the chain
must be stationary.

Random walks are also time-reversible Markob chains. Add example + walk through why

2.3 The Metropolis Method

The Metropolis method is a way of simulating Markov chains. For example, if we hope to simulate a random draw
from a distribution π we can run an irreducible aperiodic Markov chain with stationary distribution π for a sufficiently
long time. One way we can do this is by constructinga graph on which we can run a random walk. From previous
analysis we know that the probability transition matrix for a random walk on a graph is

Prw(i, j) =

{
1
d(i) j ∈ N(i)

0

and has stationary distribution

πrw(i) =
d(i)∑
j d(j)

If we want to compute a different or more complciated distribution, we can consider another distribution π where

π(i) ∝ d(i)f(i)

where f(i) is a scaling function.

The Metropolis method proposes the following augmented transition matrix:
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P (i, j) =


1
d(i) min{1, f(j)f(i) } j ∈ N(i)

1−
∑
k P (i, k) j = i

0

To verify that this method works, let’s begin by showing that π is stationary under this Markov chain. For
j ∈ N(i),

π(i)P (i, j) ∝ d(i)f(i) · 1

d(i)
min{1, f(j)

f(i)
} = f(i)min{1, f(j)

f(i)
} = min{f(i), f(j)}

It is clear that this quantity is symmetric across i and j so π(i)P (i, j) = π(j)P (j, i) We can similarly verify this
for j = i and j /∈ N(i). Now, if we sum over the indicies i∑

i

π(i)P (i, j) = π(j)
∑
i

P (j, i) = π(j)

Intuitively, the Metropolis method is the same as a random walk; however, now, after selecting an edge to traverse,

we decide whether to traverse this candidate edge with probability min{1, f(j)f(i) }. If we dont traverse this edge, we
stay in state i.

2.4 Hidden Markov Chains

Model Description

A Hidden Markov Chain is a subset of Markov Random Fields with many applications in speech recognition and
bioinformatics among other fields. They are characterized by only observing some of the random variables.

In the above model we have a Markov chainX0, ...Xn with observed variables Y0, ...Yn. The model is parameterized
by ξ the marginal distribution of X0, and the two transition matricies A and B (assuming time-homogeneity). If we
have u states and v observed states, it follows that ξ ∈ Ru, A is a u× u matrix and B is a u× v matrix.
How well does an average of a time inhomogeneous MC model the chain?

Calculating Likelihoods

A likelihood function is the probability of the observed data given the model parameters. In the HMM model,

L(θ) = pθ(y0, y1, ...yn) =
∑
x0

∑
x1

...
∑
xn

pθ(x0, ...xn, y0, yn) =
∑
x

pθ(x, y)

We can cleverly calculate this value by computing a recursive calculation. First, let’s define

αt(xt) = pθ(y0, ...yy, xt)

For the base case, lets consider t = 0.

α0(x0) = pθ(x0, y0) = ξ(x0)B(x0, y0)

For the general case, we can decompose the sum as follows:
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αt+1(xt+1) = pθ(y0, ...yt+1, xt+1)

=
∑
xt

pθ(y0, ...yy+1, xt, xt+1)

=
∑
xt

pθ(y0, ...yt, xt)pθ(xt+1|xt)p(yt+1|xt+1)

=
∑
xt

αt(xt)A(xt, xt+1)B(xt+1, yt+1)

Now we can see that the likelihood function is just a summation of these values:

L(θ) = pθ(y0, ..., yn) =
∑
xn

pθ(y0, ..., yn, xn) =
∑
xn

αn(xn)

3 Martingales

Martingales are intended to model some notion of fairness.

Definition 12 (Martingales) A process is said to be a martingale if ∀n ∈ N

E[Mn+1|M0:n] =Mn

Intuitively, this mean this that a process is martingale if the conditional expectation of the next step given the
previous steps is the current state. In the context of gambling, we can interpret this definition as fair odds since your
fortune at the next time step is expected to be equivalent to your current wealth We can also define a process to be
martingale with respect to another stochastic process.

Definition 13 (Martingales) A process is said to be a martingale with respect to another process if ∀n ∈ N

E[Mn+1|W0:n] =Mn

A process is martingale if it is martingale with respect to itself.

Branching Process Example

Consider a branching process X0, ...Xn with an offspring distribution µ.

Xn+1 =

Xn∑
i=1

Zn,i Zn,i ∼ µ

We can verify the martingale property of this process by considering

E[Xn+1|X0:n] = E[
Xn∑
i=1

Zn,i|Xn] =

Xn∑
i=1

E[Zn,i] = Xn · E[µ]

If E[µ] = 1 then the process is clearly martingale. We can also define the process Un

Un =
Xn

µn

Under this definition,

E[Un+1|U0:n] = E[
Xn+1

µn+1
|Xn] =

1

µn+1

Xn∑
i=1

E[Zn,i] =
1

µn
Xn

µ
· E[µ] = Un

Therefore, Un is martingale with respect to itself.
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Definition 14 (Submartingale) A proceess is said to be Submartingale with respect to another process Wn if
∀n ∈ N

E[Xn+1|W0:n] ≥ Xn

The current state is below the expected value for the future.

Definition 15 (Supermartingale) A proceess is said to be Supermartingale with respect to another process Wn if
∀n ∈ N

E[Xn+1|W0:n] ≤ Xn

The current state is above the expectation for the future.

3.1 Optional Stopping Theorem

Consider a martingale, Un, with respect to Wn. For an arbitrary n, we can use the tower property to write

E[Un+1] = E[E[Un+1|W0:n]] = E[Un]
It follows that for any n ∈ N

E[Un] = E[U0]

This statement can be extended further to include random stopping times T (under a few assumptions) to say
E[UT ] = E[U0]. Intuitively, we can understand thsi extensionas saying that even if a gambler has a strategy on when
to stop gambling, in expectation, they will have the same fortune.

Definition 16 (Random Stopping Time) A random variable T taking values in Z ≥ 0 is called a stopping time
with respect to Wn if the indicator 1(T = k) is a function of W0:k.

• Stopping times can take infinite values

• Stopping times cannot rely on information in the future

Theorem 3.1 (Optional Stopping Theorem (Strong Assumptions)) Consider Mn a martingale with respect
to Wn. Let T denote a random stopping time such that for some B ≤ ∞, if P(T ≤ B) = 1, then

E[MT ] = E[M0]

Proof:

First, we can decompose MT into a sum of the differences between subsequent realizations of the process.

MT =M0 +

T∑
k=1

(Mk −Mk−1) =M0 +

B∑
k=1

(Mk −Mk−1)1(T ≥ k)

We can now take the expectation over this and write

E[MT ] = E[M0] +

B∑
k=1

E[(Mk −Mk−1)1(T ≥ k)]

Notice that we can rewrite the indicator variable as 1(T ≤ k) = 1 − 1(T ≤ k − 1). This term is a function of
W0:n. Now we use the tower property to write

E[(Mk −Mk−1)1(T ≥ k)] = E[E[(Mk −Mk−1)1(T ≥ k)|W0:n]]

= E[1(T ≥ k)E[(Mk −Mk−1)|W0:n]]

= E[1(T ≥ k) · 0]
= 0

Therefore,

E[MT ] = E[M0] + 0

We can weakenthe bounded condition and write

11



Theorem 3.2 (Optional Stopping Theorem (Weak Assumptions)) Consider Mn a martingale with respect
to Wn. Let T denote a random stopping time.

E[MT ] = E[M0]

if T ≤ B with probability 1 or E[T ] ≤ ∞ and E[|Mn+1 −Mn|W0:n] ≤ B

Proof: Beyond the scope of the class

If Mn is a Supermartingale or Submartingale, then the OST tells us that

[E][Mt] ≤ E[M0]( Supermartingale) [E][Mt] ≤ E[M0]( Submartingale)

There are many applications of the OST. Below, we outline a simple proposition that makes use of the OST.

Theorem 3.3 For any Xn with E[(Xn −Xn−1)
2|X0:n] = 1, for T = inf{n ≥ 0 : Xn = −a or Xn = b}, then

E[T ] = |a| · b

The proof of this follows from defining a markovchain Un = X2
n−n and applying the OST for the random stopping

time T. Add Proof later.

Theorem 3.4 Let Di be a Supermartingale on [0, n] and E[(Di+1 − Di)
2|D0:i] ≥ σ2. If T = inf{i ≥ 0 : Di = 0},

then

E[T ] ≤ n2

σ2

Proof: Follows from showing Yi = X2
i − 2nXi − σ2i is a Submartingale and then applying the OST.

3.2 Martingale Convergence

Theorem 3.5 (Martingale Convergence Theorem) Any nonnegative supermartingale converges with probabil-
ity 1

Lemma 3.6 Let Mn represent a supermartingale such that S and T are bounded stopping times with S ≤ T with
probability 1. Then,

E[MS ] ≥ E[MT ]

When S = 0 this is identical to the OST for supermartingales.

Lemma 3.7 Let Mn be a nonnegative supermartingale. For b > 0, if Tb = inf{t ≥ 0 :Mn ≥ b} then

P(Tb ≤ ∞) ≤ E[M0]

b

If E[M0] < a, we can write

P(Tb ≤ ∞) ≤ a

b

Proof:

We first introduce N ∈ N and define Tb ∧N = min{Tb, N}. This bounds our stopping time by N. We can then
apply the Optimal Stopping Theorem and state

E[MTb∧N ] ≤ E[M0]

If Tb ≤ N , we have MTb∧N =MTb
= b. Therefore, we can write the expression

MTb∧N ≥ 1(Tb ≤ N)b

12



Now, taking the expectation over each side,

E[MTb∧N ] ≥ P{Tb ≤ N}b

We can rearrange this and take the limit N → ∞ to recover

P(Tb ≤ ∞) ≤ E[M0]

b

This results statse that any supermartingale that starts below some a ≥ 0 will stay below b > a with probability
at least 1− a

b > 0.

Proof (Martingale Convergence Theorem)

We can prove convergence by arguing that the probability the supermartingale tends towards infinity or the
probability that the submartingale oscillates between two values is infinitely many times is 0.

P
(
limUn = ∞

⋃
{Un < a infinitely often Un > b}

)
= 0

We can apply a union bound and show that the above statement is bound by

P (limUn) +
∑
a<b

{Un < a infinitely often Un > b}

We show that the first term approaches 0 by applying the earlier lemma.

P (Un ≥ b for some n ) ≤ E[U0]/b

First, note that we can construct the following chain of inequalities:

P (limUn) ≤ P(
⋂
b′>0

{Un ≥ b′}) ≤ P (Un ≥ b for some n )

Taking b→ ∞ the right side approaches 0.

P (limUn) ≤ P (Un ≥ b for some n ) ≤ E[U0]/b = 0

To show that the second term vanishes, we begin by defining a sequence of stopping times:

T0 = 0

S1 = inf{t ≥ T0 : Ut ≤ a}
T1 = inf{t ≥ S1 : Ut ≥ b}

...

Sn = inf{t ≥ Tn−1 : Ut ≤ a}
Tn = inf{t ≥ Sn : Ut ≥ b}

These hitting time definitions formalize the idea of exiting the bounded region [a, b]. Our goal is to show that
the number of n is finite. We bound both stopping times by N and consider the iequality:

E(UTk∧N ) ≤ E(USk∧N )

This can be rewritten as

E(UTk∧N − USk∧N ) ≤ 0

We can conditional decompose each term in this expression into

UTk∧N ≥ b1(Tk ≤ N) + UN1(Tk > N) (1)

USk∧N ≥ a1(Sk ≤ N) + UN1(Sk > N) (2)

13



Now, considering the difference between the two,

UTk∧N − USk∧N ≥ b1(Tk ≤ N)− a1(Sk ≤ N) + UN (1(Tk > N)− 1(Sk > N))

Since Tk ≥ Sk by definition the final term is identically 0.
Now, we can write the following:

0 ≥ E(UTk∧N − USk∧N ) = bP(Tk ≤ N)− aP(Sk ≤ N)

Rearranging this expression and taking N → ∞

P(Tk ≤ ∞) ≤ a

b
P(Sk ≤ ∞)

Note that Sk is dependent on Tk−1. Therefore, for Sk <∞ we require Tk−1 <∞.

P(Tk ≤ ∞) ≤ a

b
P(Tk−1 ≤ ∞) =

(a
b

)2
P(Tk−2 ≤ ∞) = ... =

(a
b

)k
As k approaches ∞ we see that the probability becomes 0. Therefore, we can conclude that the Supermartingale

does not oscillate infinite times.

Recurrence of Random Walks

4 Gaussian Random Variables

The multivariate gaussian distribuion has mean µ ∈ Rn and covariance Σ ∈ Rn×n.

f(x) =
1√

2π det(Σ)
exp

(
− (x− µ)TΣ−1/2(x− µ)

2

)
The Moment Generating Function for X ∼ N(µ, |sigma) is

E[eα
TX ] = eα

Tµ+αTΣα/2

This defines the guassian distribution if we know the covariance matrix. Recall that cov(X,Y ) = E[XY ] −
E[X]E[Y ]

Corollary 4.0.1 x1, ..., xn have a joint distribution which is gaussian if and only if
∑
i αixi has a normal distribution

Definition 17 (Gaussian Process) A process w(t) is said to be gaussian if and only if w(t1), ..., w(tn) are jointly
gaussian for all n ∈ N

If w(t) is a mean-zero gaussian process, then the distribution is solely determined by the covariances of cov(w(t), w(s))

5 Brownian Motion

The brownian motion problem attempts to model a continous time random walk on the real line. We can think of
the continuous stochastic process as a random variable over paths the process can take. Instead of simply mapping
the state space to a real value, in this perspective, we map both the time and the state space to a real value. If we
fix time the continous process is a random variable. If we fix the state space, we define a path.

Definition 18 (Standard Brownian Motion) A Standard Brownian Motion, w(t), is a stochastic process with
1) continuous paths, 2) stationary and independent increments, and 3) ∀t > 0, w(t) ∼ N(0, t)

The 3rd statement is equivalent to saying that the time marginal is the normal distribution with mean 0 and
variance t. A process is said to have independent increments if w(t1) − w(t0), w(t2) − w(t1), ... w(tn) − w(tn−1)
are all independently distributed. This can be interpretted as the variation in the paths over these time steps being
independent. Increments are stationary if ∀0 ≤ s < t, w(t)− w(s) is only dependent on t− s.

14



Lemma 5.1 For a SBM process, w(t)− w(s) ∼ N(0, t− s)

By the stationary increments argument, w(t) − w(s) must have the same distribution as w(t − s) − w(0). We
know that w(0) = 0 so w(t − s) − w(0) = w(t − s) ∼ N(0, t − s). SBM is a path that starts at 0 and progress as a
path of indpeendent gaussian increments. It is likea gaussian random walk.

Lemma 5.2 w(t) is a Gaussian process or w(t1), ..., w(tn) follow a gaussian distribution.

Lemma 5.3 For SBM, r(s, t) = cov(w(s), w(t)) = min(s, t)

Add covariance proof (just algebra with covariance definition + clever use of independent increments)

Definition 19 (Standard Brownian Motion 2) w(t) is SBM if and only if its a gaussian process with r(s, t) =
min{r, t} and continuous paths

Lemma 5.4 If w(t) is a SBM, then the process defined X(t) = tW ( 1t ) is also SBM.

Proof:
First, we want to show that X is a gaussian process.

a1X(t1) + ...+ anX(tn) = a1t1W (1/t1) + ...+ tnanW (1/tn)

It is clear that the right hand side is just a linear combination of a process we know to be gaussian. We know X(t)
is continuous sinceW (t) is and we are not transforming the function to change continuity. The tricky part is showing
this property for when t = 0. You can show this by breaking w(s) into a summation of increments and then argue
that by the strong law of large numbers these increments will attain their expectation 0. Therefore, w(s)/s→ 0.For
the covariance function, we can apply the properties of covariance.

cov(X(t), X(s)) = cov(tW (
1

t
), sW (

1

s
)) = stcov(W (

1

t
),W (

1

s
)) = stmin{1

t
,
1

s
} = min{s, t}

Theorem 5.5 (Markov Property) Suppose w(t) is SBM. ∀c > 0, X(t) =W (t+ c)−W (c) is also an SBM. X(t)
is independent of {w(t) : 0 ≤ t ≤ c}

If we know the realization of the process at a certain point, then the path is independent of previous realizations
conditional on this point.

5.1 Reflection Principle

The reflection principle allows us to calculate the distribution of the hitting time τb or the first time the process
reaches b

Theorem 5.6 (Reflection Principle)

P{τb ≤ t} = 2P{wt > b} = 2

(
1− Φ(

b√
t
)

)
Proof:

First, notice that we can write

{wt > b}
⋂

{τb ≤ t} = {wt > b}

since the process is continuous. We can then write the following equalities

P(τb ≤ t) = P(τb ≤ t, wt ≤ b) + P(τb ≤ t, wt > b) = P(wt < b|τb ≤ t)P{τb ≤ t}+ P{wt > b}

We can use the properties of SBM to argue that P(wt < b|τb ≤ t) = 1/2. In particular, we invoke the Markov
property and say that conditioning on ws = b for some s, by symmetry, the probability that wt < b − wt > b for
some time t > s.
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P(τb ≤ t) =
1

2
P{τb ≤ t}+ P{wt > b}

P(τb ≤ t) = 2P{wt > b}

Since we know that wt ∼ N(0, t) we can write that

P{τb ≤ t} = 2P{wt > b} = 2

(
1− Φ(

b√
t
)

)

5.2 Conditional Distribution

For 0 ≤ t, u consider Wt|Wu. Suppose we have u ≤ t.

Wt =Wt −Wu +Wu ∼ N(Wu, t− u)

This follows from the distribution of SBM with the addition of a constant Wu. However, if we have t ≤ u, we
have a more interesting problem. Recall that if (X,Y ) follow a jointly Gaussian distribution, then their conditional
distributions X|Y also follow a gaussian distribution. Therefore, if we can characterize E[Wt|Wu] and V ar[Wt|Wu]
we can characterize the distribution of Wt|Wn. We show this by showing the independence of Wt − t

uWu from Wu.
To show this, we use the fact that jointly gaussian distributed variables are only independent if their covariance is
0. We argue that Wt − t

uWu is jointly distributed with Wu and show the covariance is 0.

cov(Wt −
t

u
Wu,Wu) = cov(Wt,Wu)−

t

u
cov(Wu,Wu) = t− t

u
· u = 0

Now, we can write the conditional expectations

E[Wt −
t

u
Wu|Wu] = E[Wt −

t

u
Wu] = 0

Therefore,

E[Wt|Wu] =
t

u
E[Wu|Wu] =

t

u
Wu

We can perform a similar calculation for variance:

V ar[Wt|Wu] =
t(u− t)

u

Add in variance details
The best guess is the point on the line between W (0) = 0 and Wu

5.3 Brownian Bridge

Definition 20 (Brownian Bridge) A process is a standard brownian bridge if it is standard brownian motion
conditioned on W (1) = 0

We think of Brownian Bridges as SBM on [0, 1]. Using the above conditional distribution calculations, we can
write

E[Wt|W1 = 0] = tW (1) = 0 cov(W (s),W (t)|W (1) = 0) = s(1− t)

This process is also gaussian so a brownian bridge is a gaussian process with mean and covariance functions as
defined above. X(t) =W (t)−tW (1) is a brownian bridge which allows us to compute many of the desired properties.

Boundary Crossing

This is an equivalent calculation to the reflection principle for a standard brownian motion. What is P{τb ≤
t|W (1) = 0}?
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Theorem 5.7
P{τb ≤ t|W (t) = x} = e−

2b(b−x)
t

Skipped Proof

For a standard brownian bridge, this implies that

P{τb ≤ 1|W (1) = 0} = e−2b2 P{maxX(s) ≥ b} = e−2b2

review second equality

6 Diffusions

We can generalize the notion of a Simple Brownian Motion with the following definition:

Definition 21 ((µ, σ2)-Brownian Motion) A Process is said to be (µ, σ2)-Brownian Motion if it can be written
as

X(t) = X(0) + µt+ σW (t)∀t

where W (t) is a SBM.

µ is considered the drift of the random motion and σ is the variance. The (µ, σ2)-Brownian Motion is a linear
brownian motion; however, they can be used to construct a more general diffusion. Much like constructing a curve
from tangent approximations, we say diffusions are generalized random motion defined by local approximations via
(µ, σ2)-Brownian Motion processes. Therefore, despite being constructed from linear structures, diffusions can model
any for mof general continuous stochastic processes. Diffusions are then defined by functions µ(Xt) and σ

2(Xt).

Definition 22 (Diffusion) A stochastic process is a diffusion if it satisfies the strong Markov property and has
continuous paths with probability 1.

Diffusions are fully characterized by their drift and variance functions:

µ(X) = lim
h→0

E[X(t+ h−X(t)|X(t) = x)]

h
(3)

σ2(X) = lim
h→0

V ar[X(t+ h−X(t)|X(t) = x)]

h
(4)

(5)

It can be shown that for every point (t∗) = x the diffusion follows the brownian motion

(t− t∗)µ(x) + σ2(x)W (t− t∗)

This holds for an infinitesly small amount of time following t∗. This property is intuiitively identical to the taylor
approximation of a curve. Notice that we can also write the variance expression as

lim
h→0

E[(X(t+ h−X(t))2|X(t) = x)]

h
= lim
h→0

V ar[X(t+ h−X(t)|X(t) = x)]

h
= σ2(x)

This follows from E[X(t+ h−X(t)|X(t) = x)] = 0. We also assume that for p ≥ 3

lim
h→0

E[(X(t+ h−X(t))p|X(t) = x)]

h
= 0

Geoemetric Brownian Motion

Suppose X(t) is a (µ, σ2)-Brownian Motion. Let Y (t) = eX(t). Since X(t) satisfies the Markov property and has
continuous paths, it follows that Y (t) does as well. Therefore, it is a diffusion. The drift and variance functions are
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µ(x) = (µ+
σ2

2
)x (6)

σ2(x) = σ2x2 (7)

This definition of a diffusion yields independent ratios. Y (t2)
Y (t1)

⊥ Y (t3)
Y (t2)

and each Y (t) ≥ 0.

Ornstein-Uhlenbeck Process
This process was introduced by Einstein in his explanation of brownian motion. The process is defined by µ(x) = −x
and σ2(x) = 2. The −x drift can be thought of as a frictional force that pushes the system back towards the 0.

Theorem 6.1 For a diffusion X(t) defined by µ(x) and σ2(x) consider the diffusion Y (t) = f(X(t)) where f is
strinctly monotone and twice-differentiable. If Y (t) is a diffusion (both abides by the strong Markov property and has
continuous paths), then the drift and variance functions of Y (t) are

µy(y) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x) (8)

σ2
y(y) = f ′(x)2σ2(x) (9)

Proof:

Recall the Taylor expansion

g(x) ≈ g(x∗) + (x− x∗)g′(x∗) +
(x− x∗)2

2
g′′(x∗)

We can apply this approximation to the conditional expectation of Y

E[Y (t+ h)− Y (t)|Y (t) = y] = E[f(x(t+ h))− f(x(t))|x(t) = x] (10)

= E([x(t+ h)− x(t))f ′(x(t)) +
1

2
(x(t+ h)− x(t))2f ′′(x(t))|x(t) = x] (11)

= E([x(t+ h)− x(t))|x(t) = x]f ′(x) +
f ′′(x)

2
E[(x(t+ h)− x(t))2|x(t) = x] (12)

(13)

In the limit h→ ∞ we get

lim
h→∞

E[Y (t+ h)− Y (t)|Y (t) = y]

h
= lim
h→∞

E([x(t+ h)− x(t))|x(t) = x]

g
f ′(x) +

f ′′(x)

2
lim
h→∞

E[(x(t+ h)− x(t))2|x(t) = x]

h
(14)

= f ′(x)µ(x) +
1

2
f ′′(x)σ2(x) (15)

We can calculate something similar for the variance.

E[(Y (t+ h)− Y (t))2|Y (t) = y] = E[(f(x(t+ h))− f(x(t)))2|x(t) = x] (16)

= E([(x(t+ h)− x(t))f ′(x(t)) +
1

2
(x(t+ h)− x(t))2f ′′(x(t)))2|x(t) = x] (17)

= E([x(t+ h)− x(t))|x(t) = x]f ′(x)2 + terms involving E[(x(t+ h)− x(t))p|x(t) = x]
(18)

(19)

Since p ≥ 3 we know that these terms vanish.

lim
h→0

E[(Y (t+ h)− Y (t))2|Y (t) = y]

h
= f ′(x)2 lim

h→∞

E([x(t+ h)− x(t))2|x(t) = x]

h
= f ′(x)2σ(x)2
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6.1 Kolmogorov’s Forward and Backward Equations

Our next step is to characterize the protability transition structure for a diffusion. In Markov Chains, we had the
probability transition matrix provide us the transition probabilities from time t to t + 1, but since diffusions are
continuous, we need new machinery to speak on the rate of change of the probability density function for a given
state. We can do this by defining a set of partial differential equations.
First, consider a fixed state y. We define the function f(t, x) to be the density of Xt evaluated at y given that X0 = x.

f(t, x) = fXt
(y|X0 = x)

What is the probability density of hitting state y, if we take the process Xt with X0 = 0. The Kolmogorov
backward equation states

∂tf(t, x) = µ(x)∂xf(t, x) +
1

2
σ2(x)∂xxf(t, x)

If we consider an initial probability density of X0 and define g(t, y) to be the density of Xt evaluated at y,
g(t, y) = fXt(y), the forward equation gives us how this probability density evolves over time

∂tg(t, y) = −∂y(µ(y)g(t, y)) + ∂yy

(
1

2
σ2(y)g(t, y)

)
Driftless Brownian Motion

If we consider the simple SBM with µ(x) = 0 and σ2(x) = 1,

∂tg(t, y) =
1

2
∂yyg(t, y)

This equation is the heat equation since it models how the temperature of a material evolves over time.

Stationarity

Diffusions converge to a stationary distribution as t→ ∞.

Definition 23 (Stationary Distribution) We say that X(0) ∼ Π is a stationary distribution for X(t) if ∀t ≥ 0,
X(t) ∼ Π

Notice that the stationary definition implies g(t, y) = Π(y) since Xt ∼ |Pi. This means that the right hand side
of the forward equation simplifies to 0.

0 = −∂y(µ(y)Π(y)) + ∂yy

(
1

2
σ2(y)Π(y)

)
(20)

(21)

This differential equation only has one variable and is much easier to work with.

Ornstein-Uhlenbeck Process
The OU process is defined by µ(x) = −x and σ2(x) = 2. Our stationarity constraint now gives us

0 = −(yΠ(y))′ +
1

2
(2Π(y))

′′
(22)

(Π(y)′ + yΠ(y))′ = 0 (23)

This implies that there is a constant such that Π(y)′+yΠ(y) = B. We can write this as the equivalent expression(
Π(y)ey

2/2
)′

= Bey
2/2

We can then integrate both sides and write

Π(y)ey
2/2 = B

∫ y

0

ex
2/2dx+ C
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If we consider y → −∞ this equation only holds true if B = 0
Therefore, we have

Π(y) = Ce−y
2/2

If we include normalization, we see that this is simply the Gaussian distribution. Therefore, the process converges
to the standard gaussian.

Langevin Dynamics

This can be thought of as the continuous analog of metropolis hastings. Essenentially, we can create a difussion
that, in the limit t→ ∞, samples from the density:

e−ψ(x)∫∞
−∞ e−ψ(x)dx

We use the diffusion µ(x) = −ψ′(x) and σ2(x) = 2.

7 Stochastic Differential Equations

Stochastic Differential equations are methods to model randomness in the world. They also provide a clean definition
of diffusions. Consider the rate of change equation

dX(t)

dt
= µ(x(t), t) + σ(x(t), t)N(t)

where the N(t) term represents some sense of noise or randomness in the growth rate of our process. We make
the following assumptions:

• N(t) is a stationary Gaussian process (N(t)−N(s) is a function of t− s)

• E[N(t)] = 0

• N(t) ⊥ N(s) ∀s ̸= t

We can think of N(t) as a SBM where dW (t) = N(t)dt. We can now think of our equation as

dX(t) = µ(X(t), t)dt+ σ(x(t), t)dW (t)

We interpret this stochastic differential equaiton as

X(t+ dt) ≈ X(t) + µ(X(t), t)dt+ σ(x(t), t)W (dt)

Notice that this expression is a generalization of the diffusion since the drift and variance now also depend on t
as well as X(t).

7.1 Ito’s Formula

If X(t) obeys dX(t) = µ(X(t), t)dt+σ(x(t), t)dW (t), then for all twice differnetiable functions f , if Y (t) = f(t,X(t))

dY (t) =

(
∂f

∂t
(t, x(t)) + µ(x(t), t) · ∂f

∂x
(t, x(t)) +

σ2(t, x(t))

2

∂2f

∂2x
(t, x(t))

)
dt (24)

+ σ(t, x(t))
∂f

∂x
(t, x(t))dW (t) (25)

Y (t) is a diffusion with the corresponding drift and variance functions. This expression can be cleverly simplified
into

dY (t) =
∂f

∂t
(t, x(t))dt+

∂f

∂x
(t, x(t))dx(t) +

1

2

∂2f

∂2x
(t, x(t))(dx(t))2 (26)
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Notice that stochastic calculus introduce an additional 1
2
∂2f
∂2x (t, x(t))(dx(t))

2 term that wouldn’t be expected if
the system was deterministic. We can compute (dx(t))2 by using the rules dt(danything) = 0 and (dWt)

2 = dt
Skipped showing the simplied form is equal to the first form

Geometric Brownian Motion

Let Y (t) = eµt+σW (t). From above, we know that the drift and variance functions are µ(x) =
(
µ+ σ2

2

)
x and

σ2(x) = σ2x2. We can find the associated Stochastic Differential Equation as

dY (t) = (µ+
σ2

2
)Y (t)dt+ σY (t)dW (t)

How can we reocver Y (t) given this SDE?
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